• 首页
  • 宠物资讯
  • 宠物食品
  • 宠物用品
  • 宠物寄养
  • 宠物医院
  • 宠物托运
  • 宠物殡葬
首页 > 宠物交易> 《八年级上册数学教案优秀12篇》

《八年级上册数学教案优秀12篇》

时间:2025-06-06 16:45:29 济南宠物发布:济南宠物

作为一名无私奉献的老师,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。如何把教案做到重点突出呢?

数学八年级上教案 1

一、学习目标

1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

8年级数学上册教学工作计划 2

一、学情分析:

今年我任教初二1、2班两个班的教学,1班现有学生57人,十三班现有学生56人,经过一学年的学习,在学生所学知识的掌握程度上,从成绩看,优中差分化比较大,优生不突出,差生相对较多。学生的学习习惯也参差不齐。根据以上情况看,为了使优生更加突出,中等生尽快优化,差生尽快转化进步,本学期应以提高学生的学习积极性,促使优生拔高、提高差生的学习成绩和促进中等生优化为主要任务。

二、教材分析:

本学期教学内容:

第一章:全等三角形;第二章:轴对称;第三章:实数;第四章:一次函数;第五章:整式的。乘除与因式分解。

三、教学目标及教学工作计划:

教学工作目标:

在今学期的数学教学中,争取期中、期末考试同科教师中名列前茅。

(1)备课:

按照学校要求、结合本学科实际充分做到既备教材又备学生。课时备课要从学生实际出发,站在学生的角度上考虑,教案要备深、备细,突出实用性。总领课、新授课、复习课、讲评课等各种课型要齐全。根据要求做到“四落实”即知识点落实、教法落实、检测手段落实、反馈措施落实。备课要体现出电教手段的使用。做到提前备课。充分发挥好集体备课和周二的分科学习的作用。

(2)上课:

严格按照“双线教学整体推进”模式的环节授课,让学生更多的思考、更多的探索、更多的说和做,使教学最大限度地满足学生个体差异,实现课堂教学的高质量和高效率,立足课堂 向四十五分钟要质量。

(3)测试与反馈矫正:

在教学中要利用好测试这一手段,要通过考试帮助学生寻找差距和造成差距的原因,明确努力方向。在讲评中进行纠错、总结、深化,激励学生向更高的目标迈进。及时掌握学生的学习情况,找出薄弱环节,及时弥补缺漏。根据达标测试的情况写出质量分析。

四、具体落实措施:

1、加强学习,取他人之长补己之短,提高自身素质。

2、落实常规,脚踏实地,干好自己的本职工作。

3、大胆探索,敢于创新。

4、加强课堂教学改革,利用各种教学手段,提高学生学习兴趣。培养学生的自觉学习、主动学习、创新学习的好习惯。

5、加强单元、课时备课,在吃透教材的基础上备教材、备学生,为上好每一堂课做好充分准备。

6、在教学中注意分类指导,根据学生的基础分类讲解,分类检测。

五、教学进度:

略。

初二数学上册教案 3

教学目标

1知识与技能目标

(1)通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性。

(2)能判断给出的数是否为无理数,并能说出理由。

2过程与方法目标

(1)学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神。

(2)通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力。

(3)借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力。

3情感与态度目标

(1)激励学生积极参与教学活动,提高大家学习数学的热情。

(2)引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算。

(3)了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神。

教学重点

1让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数。

2会判断一个数是否为有理数,是否不是有理数。

3用计算器进行无理数的估算。

教学难点

1把两个边长为1的正方形拼成一个大正方形的动手操作过程。

2无理数概念的建立及估算。

3判断一个数是否为有理数。

教学准备:多媒体,两个边长为1的正方形,剪刀,短绳。

教学过程:

第一环节:章节引入(2分钟,学生阅读感受)

内容:.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:

(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?

(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形。请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?

b.你能求出面积为2的正方形的边长吗?你知道圆周率的精确值吗?它们能用整数或分数(即有理数)来表示吗?

第二环节:复习引入(3分钟,学生口答)

内容:阅读下面的资料,在数学中,有理数的定义为:形如的数(p、q为互质的整数,且p≠0)叫做有理数,当p=1,q为任意整数时,有理数就是指所有的整数,如:=-2等,当p≠1时,由p、q互质可知,有理数就是指所有的分数,如,-,-等,综上所述,有理数就是整数和分数的统称。

请用上述材料中所涉及的知识证明下面的问题:

a.直角边长分别为3和1的直角三角形的斜边长是不是有理数?

b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢?

第三环节:活动探究(15分钟,学生动手操作,小组合作探究)

(一)发现新数

内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形。

在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:

(1)设大正方形的边长为,应满足什么条件?

(2)满足:2=2的数是一个什么样的数?可能是整数吗?说明你的理由?

(3)可能是分数吗?说说你的理由?

引出课题《数怎么又不够用了》

(二)感受新数的广泛性

内容:面积为5的正方形,它的边长b可能是有理数吗?说说你的理由。

(三)巩固验证,应用拓展

内容:aB,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗?可能是分数吗?说明理由。

b如图(1)是由16个边长为1的小正方形拼成的,试从连接这些

小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线段,两条长度不是有理数的线段

第四环节:介绍历史,开阔视野(3分钟,学生阅读)

内容:早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述。后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说,为此希伯斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来,古希腊人终于正视了希伯索斯的发现。

第五环节:课时小结(2分钟,全班交流)

内容谈谈本节课你有什么收获与体会?有哪些困难需要别人帮你解决?

b感受数不够用了,会确定一个数是有理数或不是有理数。

c本节课用到基本方法:动手、操作、观察、思考,猜想验证,推理,归纳等过程,获取数学知识。

第六环节:布置作业

八年级上册数学教案 4

一。教学目标:

1、了解方差的定义和计算公式。

2、理解方差概念的产生和形成的过程。

3、会用方差计算公式来比较两组数据的波动大小。

二。重点、难点和难点的突破方法:

1、重点:方差产生的必要性和应用方差公式解决实际问题。

2、难点:理解方差公式

3、难点的突破方法:

方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三。例习题的意图分析:

1、教材P125的讨论问题的意图:

(1)。创设问题情境,引起学生的学习兴趣和好奇心。

(2)。为引入方差概念和方差计算公式作铺垫。

(3)。介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4)。客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2、教材P154例1的设计意图:

(1)。例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2)。例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四。课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五。例题的分析:

教材P154例1在分析过程中应抓住以下几点:

1、题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2、在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3、方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六。随堂练习:

1、从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数1 2 3 4 5

段巍13 14 13 12 13

金志强10 13 16 14 12

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2、段巍的成绩比金志强的成绩要稳定。

七。课后练习:

1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

2、甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。

3、甲、乙两台机床生产同种零件,10天出的次品分别是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

4、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

答案:1. 6 2.>、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

4、 =10.9、S =0.02;

=10.9、S =0.008

选择小兵参加比赛。

初二数学上册教案 5

1、教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。

2、教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

一、素质教育目标

(一)知识教学点

1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。

2、了解四边形的不稳定性及它在实际生产,生活中的应用。

(二)能力训练点

1、通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

2、通过推导四边形内角和定理,对学生渗透化归思想。

3、会根据比较简单的条件画出指定的四边形。

4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美。

二、学法引导

类比、观察、引导、讲解

三、重点难点疑点及解决办法

1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

2、教学难点:理解四边形的。有关概念中的一些细节问题;四边形不稳定性的理解和应用。

3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

第一课时

七、教学步骤

【复习引入】

在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一

章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。

【引入新课】

用投影仪打出课前画好的教材中P119的图。

师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。

【讲解新课】

1、四边形的有关概念

结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形。

(2)要与三角形类比。

(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。

(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。

(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。

(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。

2、四边形内角和定理

教师问:

(1)在图4—3中对角线AC把四边形ABCD分成几个三角形?

(2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?

(3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。

我们知道,三角形内角和等于180,那么四边形的内角和就等于:

①2180=360如图4

②4180—360=360如图4—7。

例1已知:如图48,直线于B、于C。

求证:(1) (2) 。

本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。

【总结、扩展】

1、四边形的有关概念。

2、四边形对角线的作用。

3、四边形内角和定理。

八、布置作业

教材P128中1(1)、2、 3。

九、板书设计

四边形有关概念

四边形内角和

例1

十、随堂练习

教材P122中1、2、3。

八年级数学上册教案 6

教学目标

知识与能力:

1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

2.理解平行四边形的另一种判定方法,并学会简单运用.

过程与方法:

1.经历平行四边行判别条件的'探索过程,在有关活动中发展学生的合情推理意识.

2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

情感、态度与价值观:

通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

教学方法启发诱导式 教具 三角尺

教学重点平行四边形判定方法的探究、运用.

教学难点对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用

教学过程:

第一环节 复习引入:

问题1:

1.平行四边形的定义是什么?它有什么作用?

2.判定四边形是平行四边形的方法有哪些?

(1)两组对边分别平行的四边形是平行四边形。

(2)一组对边平行且相等的四边形是平行四边形。

(3)两条对角线互相平分的四边形是平行四边形。

第二环节 探索活动

活动:

工具:两对长度分别相等的木条。

动手:能否在平面内用这四根笔摆成一个平行四边形?

思考1.1:你能说明你所摆出的四边形是平行四边形吗?

已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形。

思考1.2:以上活动事实,能用文字语言表达吗?

学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:

(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.

(2)通过观察、实验、猜想到:

两组对边分别相等的四边形是平行四边形.

在此活动中,教师应重点关注:

(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;

(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;

(3)学生能否通过独立思考、小组合作得出正确的证明思路.

第三环节 巩固练习

例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?

八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?

随堂练习

1.判断下列说法是否正确

(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

(2)两组对角都相等的四边形是平行四边形 ( )

(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?

3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.

4.如图:AD是ΔABC的边BC边上的中线。

(1)画图:延长AD到点E,使DE=AD,连接BE,CE;

(2)判断四边形ABEC的形状,并说明理由。

第四环节 小结:

师生共同小结,主要围绕下列几个问题:

(1)判定一个四边形是平行四边形的方法有哪几种?

(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

(3)平行四边形判定的应用 集备意见 个案补充

学习建议 7

众享完整学习过程关键动作
课前预习①回顾前期相关知识,扫清学习障碍;

②用铅笔预习、做题,联系对比,感悟本讲新知识;

*预习后建议对比优秀学生的示范.

听课①按照老师指令听课、做题;

②结合老师的讲解示范,用黑笔做下一题,调整、优化预习时的思路;

③用红笔记录老师讲解的训练要点、自己出错的地方;

*听课后建议对比优秀学生的示范.

随堂测试按照课堂示范要点,用标准动作做典型题测试,并保留演草过程和计算过程;

*做题后建议对比优秀学生的示范.

习题①回顾知识点睛、课堂笔记,读一读、背一背;

②看【例题示范】,边看边思考动作要领;

③做【巩固练习】,并保留演草过程和计算过程;

④完成【思考小结】,复习总结相关知识;

*做题后建议对比优秀学生的示范.

天天练①周一到周六,每天做一套天天练,并思考问与答;

②看解题思路,对比学习天天练示范.

初二数学上册教案 8

教学目标

1.掌握正方形的定义、性质和判定及它们初步应用。

2.理解正方形与平行四边形、矩形、菱形的内在联系。

3.通过正方形与平行四边形、矩形、菱形的联系的教学来提高学生的逻辑思维能力。

教学重点和难点

重点是正方形的定义及正方形与矩形、菱形的联系;

难点是正方形与矩形、菱形的关系及正方形的性质、判定的灵活运用。

教学过程设计

一、通过知识结构的教学,学习正方形的知识。

1.复习平行四边形、矩形、菱形的定义。

学生边回答,教师边用活动教具演示平行四边形演变成矩形、菱形的过程,并画出它们之间的内在联系图。(画出图4-50(a)中的四边形,平行四边形、矩形、菱形及箭头)

2.类比联想,用运动方式得出正方形的定义。

问:既然矩形、菱形都能由平行四边形运动变化得到,那么正方形呢?

启发学生将小学熟悉的正方形与平行四边形作比较,用教具演示出平行四边形形成正方形的过程,同时归纳出正方形的定义。教师板书定义并画出图4-50中的正方形及箭头①.

3.完善特殊的平行四边形的知识结构。

(1)师生共同分析正方形定义的三个要点:①是平行四边形;②有一个角是直角;③有一组邻边相等。

(2)对比正方形与矩形、菱形的定义,得出它们的联系:

①由正方形定义①,②条件可知正方形是特殊的矩形。(画出图中的箭头②及正方形集合A5和矩形集合A1)

②由正方形定义的①,③条件可知正方形是特殊的菱形。(画出图4-50中的箭头③及菱形集合A2)

③由正方形的定义的所有条件可知,正方形又是特殊的平行四边形。(画出图4-50中的集合A3)

④平行四边形、矩形、菱形、正方形都是特殊的四边形。(画出图4-50(b)中四边形集合A4)

而且从以上过程可知,正方形既是矩形又是菱形。(集合A2与A1的公共部分)

4.从整体知识结构出发,研究正方形的性质和判定。

(1)正方形的性质。

引导学生由正方形与矩形、菱形的关系得知:正方形具有矩形和菱形的一切性质。让学生复习矩形和菱形的性质,从而得到正方形的性质。

①边:四边都相等。(性质定理1)

②角:四个角都是直角。

③对角线:相等、互相垂直平分,每条对角线平分一组对角。(性质定理2)

(2)正方形的判定。

引导学生根据正方形与平行四边形、矩形、菱形之间的关系,总结出正方形的三类判定方法:

①先判定四边形是平行四边形,再判定它是正方形;(图4-50(a)中箭头①)

②先判定四边形是矩形,再判定这个矩形又是菱形;(图4-50(a)中箭头②)

③先判定四边形是菱形,再判定这个菱形又是矩形。(图4-50(a)中箭头③)

(3)巩固练习:判断下列命题是否正确,不是正方形的补充什么条件能让它成为正方形?

①四个角都相等的四边形是正方形;(×)

②四条边都相等的四边形是正方形;(×)

③对角线相等的菱形是正方形;(√)

④对角线互相垂直的矩形是正方形;(√)

⑤对角

八年级数学上册学习步骤 9

训练板块训练目标
三角形通过角的相关计算和证明,培养学生“看到什么想什么”的思考方式,熟练调用与角有关的定理,打通已知和所求,形成完整的思维链条;让学生初步体验辅助线的作用,依据定理,通过“搭桥、补全”转为基本图形解决.

训练学生掌握几何作图基本操作和规范的几何语言;按照先拆解再合练、先填空再独立书写的方式,分解动作训练学生的书写表达,为全等三角形的训练做好铺垫.

全等三角形在掌握全等三角形的性质及判定的基础上,以典型特征(中点,线段的和差倍分等)下辅助线的作法倍长中线、截长补短等为例,进一步训练学生对全等结构的认识,并能够根据特征构造全等三角形来解决问题;通过类比探究、动点问题等综合性题目,培养学生在固定框架下有序思考,有序操作的能力.
轴对称在掌握等腰三角形性质及判定的基础上,进一步训练学生对特殊等腰三角形(等边三角形、等腰直角三角形)的认识以及在特殊结构(三线中已知两线)中构造等腰三角形解决问题的能力,培养学生有理有据的推理能力和结构化意识.
整式的乘法与因式分解在学习了整式的运算法则的基础上,进一步从整体代入、几何表示以及公式的逆用等方面来学习整式.重在让学生掌握整体代入的思想方法,灵活运用知二求二进行计算,通过公式几何表示的讲解,建立起代数和几何之间的联系.训练学生观察、归纳、转化的代数推理能力.

因式分解模块在“一提、二套、三分、四查”的基本思路下,训练换元、拆项添项、待定系数等恒等变形技巧,构造或转化为熟悉模型结构,把复杂问题转为四种基本方法解决,训练学生转化化归的能力,提升学生的代数运算技能、分析推理能力.

分式调用分式的基本性质、运算法则和应用,通过特征的观察与分析,辅以恰当的代数变形技巧(逐项通分、裂项相消、换元、取倒数、设参数等)来解决问题,训练学生转化化归、整体代入的数学思想.

数学八年级上册教案 10

一、 教学目标

1.了解分式、有理式的概念。

2.理解分式有意义的条件,能熟练地求出分式有意义的条件。

二、重点、难点

1.重点:理解分式有意义的条件。

2.难点:能熟练地求出分式有意义的条件。

三、课堂引入

1.让学生填写P127[思考],学生自己依次填出:

2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的'流速为多少?

请同学们跟着教师一起设未知数,列方程。

设江水的流速为v /h.

轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=.

3.以上的式子,有什么共同点?它们与分数有什么相同点和不同点?

四、例题讲解

P128例1. 当下列分式中的字母为何值时,分式有意义。

[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

出字母的取值范围。

[补充提问]如果题目为:当字母为何值时,分式无意义。你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念。

(补充)例2. 当为何值时,分式的值为0?

(1) (2) (3)

[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解。

[答案] (1)=0 (2)=2 (3)=1

五、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4,

2. 当x取何值时,下列分式有意义?

(1) (2) (3)

3. 当x为何值时,分式的值为0?

(1) (2) (3)

六、课后练习

1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时。

(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时。

(3)x与的差于4的商是 .

2.当x取何值时,分式 无意义?

3. 当x为何值时,分式 的值为0?

八年级数学上册全册教案 11

第11章 三角形

教材内容

本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。

三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用。

教学目标

〔知识与技能〕 www. 12999. com

1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。

〔过程与方法〕

1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕

1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

重点难点

三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。

课时分配

11.1与三角形有关的线段 ……………………………………… 2课时

11.2 与三角形有关的角 ………………………………………… 2课时

11.3多边形及其内角和 ………………………………………… 2课时

本章小结 ………………………………………………………… 2课时

11.1.1三角形的边

[教学目标]

〔知识与技能〕

1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;

2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程]

一、情景导入

三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?

二、三角形及有关概念

不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC用符号表示为△ABC。三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示。

三、三角形三边的不等关系

探究:[投影7]任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?

有两条路线:(1)从B→C,(2)从B→A→C;不一样, AB+AC>BC�

同样地有 AC+BC>AB ②

AB+BC>AC ③

由式子①②③我们可以知道什么?

三角形的任意两边之和大于第三边。

四、三角形的分类

我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形�

按角分类:

三角形 直角三角形

斜三角形 锐角三角形

钝角三角形

那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形;

有两条边相等的三角形叫做等腰三角形;

三边都不相等的三角形叫做不等边三角形。

显然,等边三角形是特殊的等腰三角形。

按边分类:

三角形 不等边三角形

等腰三角形 底和腰不等的等腰三角形

等边三角形

五、例题

例 用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?

分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?

解:(1)设底边长为x㎝,则腰长2 x㎝。

x+2x+2x=18

解得x=3.6

所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.

(2)如果长为4㎝的边为底边,设腰长为x㎝,则

4+2x=18

解得x=7

如果长为4㎝的边为腰,设底边长为x㎝,则

2×4+x=18

解得x=10

因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。

由以上讨论可知,可以围成底边长是4㎝的等腰三角形。

五、课堂练习

课本4頁练习1、2题。

六、课堂小结

1、三角形及有关概念;

2、三角形的分类;

3、三角形三边的不等关系及应用。

作业:

课本8頁1、2、6;

教后记

11.1.2 三角形的高、中线与角平分线

〔教学目标〕

〔知识与技能〕

1、经历画图的过程,认识三角形的高、中线与角平分线;

2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点。

〔教学过程〕

一、导入新课

我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。

二、三角形的高

请你在图中画出△ABC的一条高并说说你画法。

从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高,表示为AD⊥BC于点D。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形AB 、AC边上的高,看看有什么发现?

三角形的三条高相交于一点。

如果△ABC是直角三角形、钝角三角形,上面的结论还成立吗?

现在我们来画钝角三角形三边上的高,如图。

显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。

上面的结论还成立。

三、三角形的中线

如图,我们把连结△ABC的顶点A和它的对边BC的中点D,所得线段AD叫做△ABC的边BC上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.

请你在图中画出△ABC的另两条边上的中线,看看有什么发现?

三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

四、三角形的角平分线

如图,画∠A的平分线AD,交∠A所对的边BC于点D,所得线段AD叫做△ABC的角平分线,表示为∠BAD=∠CAD或∠BAD=∠CAD=1/2∠BAC或2∠BAD=2∠CAD=∠BAC。

思考:三角形的角平分线与角的平分线是一样的吗?

三角形的角平分线是线段,而角的平分线是射线,是不一样的。

请你在图中再画出另两个角的平分线,看看有什么发现?

三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?

三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。

五、课堂练习

课本5頁练习1、2题。

六、课堂小结

1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。

七作业:

课本8頁3、4;

八、教后记

11.1.3三角形的稳定性

[教学目标]

〔知识与技能〕

1、 知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形稳定性及应用。

[教学过程]

一、情景导入

盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?

二、三角形的稳定性

〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?

不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?

会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?

不会改变。

从上面的实验中,你能得出什么结论?

三角形具有稳定性,而四边形不具有稳定性。

三、三角形稳定性和四边形不稳定的应用

三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如:

钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。

你还能举出一些例子吗?

四、课堂练习

1、下列图形中具有稳定性的是( )

A正方形 B长方形 C直角三角形 D平行四边形

2、要使下列木架稳定各至少需要多少根木棍?

3、课本7頁练习。

五作业:8頁5;9頁10题。

六、教后记

11.2.1三角形的内角

[教学目标]

〔知识与技能〕

掌握三角形内角和定理。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形内角和定理是重点;三角形内角和定理的证明是难点。

[教学过程]

一、导入新课

我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?

二、三角形内角和的证明

回顾我们小学做过的实验,你是怎样操作的?

把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出

∠BCD的度数,可得到∠A+∠B+∠ACB=1800。[投影1]

图1

想一想,还可以怎样拼?

①剪下∠A,按图(2)拼在一起,可得到∠A+∠B+∠ACB=1800。

图2

②把和剪下按图(3)拼在一起,可得到∠A+∠B+∠ACB=1800。

如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?

已知△ABC,求证:∠A+∠B+∠C=1800。

证明一

过点C作CM∥AB,则∠A=∠ACM,∠B=∠DCM,

又∠ACB+∠ACM+∠DCM=1800

∴∠A+∠B+∠ACB=1800。

即:三角形的内角和等于1800。

由图2、图3你又能想到什么证明方法?请说说证明过程。

三、例题

例 如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角∠ACB是多少度?

分析:怎样能求出∠ACB的度数?

根据三角形内角和定理,只需求出∠CAB和∠CBA的度数即可。

∠CAB等于多少度?怎样求∠CBA的度数?

解:∠CBA=∠BAD-∠CAD=800-500=300

∵AD∥BE ∴∠BAD+∠ABE=1800

∴∠ABE=1800-∠BAD=1800-800=1000

∴∠ABC=∠ABE-∠EBC=1000-400=600

∴∠ACB=1800-∠ABC-∠CAB=1800-600-300=900

答:从C岛看AB两岛的视角∠ACB=1800是900。

四、课堂练习

课本13頁1、2题。

五作业:

16頁1、3、4;

六、教后记

11.2.2三角形的外角

[教学目标]

〔知识与技能〕

理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。

[教学过程]

一、导入新课

〔投影1〕如图,△ABC的三个内角是什么?它们有什么关系?

是∠A、∠B、∠C,它们的和是1800。

若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?

二、三角形外角的概念

∠ACD叫做△ABC的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。

想一想,三角形的外角共有几个?

共有六个。

注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角。

三、三角形外角的性质

容易知道,三角形的外角∠ACD与相邻的内角∠ACB是邻补角,那与另外两个角有怎样的数量关系呢?

〔投影2〕如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD与∠A、 ∠B的关系吗?

∵CE∥AB, ∴∠A=∠1,∠B=∠2

又∠ACD=∠1+∠2

∴∠ACD=∠A+∠B

你能用文字语言叙述这个结论吗?

三角形的一个外角等于与它不相邻的两个内角之和。

由加数与和的关系你还能知道什么?

三角形的一个外角大于与它不相邻的任何一个内角。

即 ,。

四、例题

〔投影3〕例 如图,∠1、∠2、∠3是三角形ABC的三个外角,它们的和是多少?

分析:∠1与∠BAC、∠2与∠ABC、∠3与∠ACB有什么关系?∠BAC、ABC、∠ACB有什么关系?

解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,

∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400

又∠BAC+∠ABC+∠ACB=1800

∴∠1+∠2+∠3==3600。

你能用语言叙述本例的结论吗?

三角形外角的和等于3600。

五、课堂练习

课本15頁练习;

六、课堂小结

1、什么是三角形外角?

2、三角形的外角有哪些性质?

七、作业:

课本12頁5、6;

八、教后记

11.3.1 多边形

[教学目标]

〔知识与技能〕

1、 了解多边形及有关概念,理解正多边形的概念。2、区别凸多边形与凹多边形。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]多边形及有关概念、正多边形的概念是重点;区别凸多边形与凹多边形是难点。

[教学过程]

一、情景导入

[投影1]看下面的图片,你能从中找出由一些线段围成的图形吗?

二、多边形及有关概念

这些图形有什么特点?

由几条线段组成;它们不在同一条直线上;首尾顺次相接。

这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。

多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。

与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A、∠B、∠C、∠D、∠E。多边形的边与它的邻边的延长线组成的角叫做多边形的外角。如图中的∠1是五边形ABCDE的一个外角。[投影2]

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线。

四边形有几条对角线?五边形有几条对角线?画图看看。

你能猜想n边形有多少条对角线吗?说说你的想法。

n边形有1/2n(n-3)条对角线。因为从n边形的一个顶点可以引n-3条对角线,n个顶点共引n(n-3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2n(n-3)条对角线。

三、凸多边形和凹多边形

[投影3]如图,下面的两个多边形有什么不同?

在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。

注意:今后我们讨论的多边形指的都是凸多边形。

四、正多边形的概念

五、课堂练习

课本21頁练习1、2。

3、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗?

六、课堂小结

1、多边形及有关概念。

2、区别凸多边形和凹多边形。

3、正多边形的概念。

4、n边形对角线有1/2n(n-3)条。

七、作业:

课本24頁1。

八、教后记

11.3.2 多边形的内角和

[教学目标]

〔知识与技能〕

1、 了解多边形的内角、外角等概念;

2、 2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]多边形的内角和与多边形的外角和公式是重点;多边形的内角和定理的推导是难点。

[教学过程]

一、复习导入

我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?

二、多边形的内角和

〔投影1〕如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°。

类似地,你能知道五边形、六边形…… n边形的内角和是多少度吗?

〔投影2〕观察下面的图形,填空:

五边形 六边形

从五边形一个顶点出发可以引 对角线,它们将五边形分成 三角形,五边形的内角和等于 ;

从六边形一个顶点出发可以引 对角线,它们将六边形分成 三角形,六边形的内角和等于 ;

〔投影3〕从n边形一个顶点出发,可以引 对角线,它们将n边形分成 三角形,n边形的内角和等于 。

n边形的内角和等于(n一2)·180°.

从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?

分法一 〔投影3〕如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。

∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°。

图1 图2

分法二 〔投影4〕如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形。

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n一2)×180°.

三、例题

〔投影6〕例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?

如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系。

分析:∠A、∠B、∠C、∠D有什么关系?

解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°

又∠A+∠C=180°

∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说,如果四边形一组对角互补,那么另一组对角也互补。

〔投影7〕例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少?

如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值。

分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?

解:∵∠1+∠BAF=180° ∠2+∠ABC=180°∠3+∠BAD=180°

∠4+∠CDE=180°∠5+∠DEF=180° ∠6+∠EFA=180°

∴∠1+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°

又∠1+∠2+∠3+∠4+∠5+∠6=4×180°

∴∠BAF+∠ABC+∠BAD+∠CDE+∠DEF+∠EFA=6×180°-4×180°=360°

这就是说,六边形形的外角和为360°。

如果把六边形换成n边形可以得到同样的结果:

n边形的外角和等于360°。

对此,我们也可以这样来理解。〔投影8〕如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

四、课堂练习

课本24頁1、2、3题。

五、课堂小结

n边形的内角和是多少度?

n边形的外角和是多少度?

六、作业:

课本24頁2、3;

七、教后记

本章小结

一、知识结构

二、回顾与思考

1、什么是三角形?什么是多边形?什么是正多边形?

三角形是不是多边形?

2、什么是三角形的高、中线、角平分线?什么是对角线?

三角形有对角线吗?n边形的的对角线有多少条?

3、三角形的三条高,三条中线,三条角平分线各有什么特点?

4、三角形的内角和是多少?n边形的内角和是多少?

你能用三角形的内角和说明n边形的内角和吗?

5、三角形的外角和是多少?n边形的外角和是多少?

你能说明为什么多边形的外角和与边数无关吗?

6、怎样才算是平面镶嵌?平面镶嵌的条件是什么?能单独进行平面镶嵌的多边形有哪些?

你能举一个几个多边形进行平面镶嵌的例子吗?

三、例题导引

例1 如图,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分别是边AC、AB上的高,BD、CE相交于点H,求∠BHC的度数。 例2 如图,把△ABC沿DE折叠,当点A落在四边形BCDE内部时,

探索∠A与∠1+∠2有什么数量关系?并说明理由。

例3 如图所示,在△ABC中,△ABC的内角平分线与外角平分线交于点P,试说明∠P=1/2∠A.

四、巩固练习

课本28—29頁复习题7(第3题可不做).

五、教后记

第十二章 全等三角形

单元要点分析

教学内容

本章的主要内容是全等三角形。主要学习全等三角形的性质以及探索判定三角形全等的方法,并学会怎样应用全等三角形进行证明,本章划分为三个小节,第一节学习三角形全等的概念、性质;第二节学习三角形全等的判定方法和直角三角形全等的特殊判定方法;第三节利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。

教材分析

教材力求创设现实、有趣的问题情境,使学生经历从现实活动中抽象出几何模型和运用所学内容解决实际问题的过程。在内容呈现上,把研究三角形全等条件的重点放在第一个条件上,通过“边边边”条件探索什么是三角形的判定,如何判定,怎样进行推理论证,怎样正确地表达证明过程。学生开始学习三角形判定定理时的困难在于定理的证明,而这些推理证明并不要求学生掌握。为了突出判定方法这条主渠道,教材都作为基本事实提出来,在画图、实验中让学生知道它们的正确性就可以了。在“角的平分线的性质”一节中的两个互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆命题、互逆定理等内容,这将在“勾股定理”中介绍。

三维目标

1.知识与技能

在探索全等三角形的性质与判定中,提高认知水平,积累数学活动经验。

2.过程与方法

经历探索三角形全等的判定的,发展空间观念和有条理的表达能力,掌握两个三角形全等的判定并应用于实际之中。

3.情感、态度与价值观

培养良好的观察、操作、想象、推理能力,感悟几何学的内涵。

重、难点与关键

1.重点:使学生理解证明的基本过程,掌握用综合法证明的格式。

2.难点:领会证明的分析思路,学会运用综合法证明的格式。

3.关键:突出三角形全等的判定方法这条主线,淡化对定理的证明。

教学建议

1.注意使学生经历探索三角形性质及三角形全等的判定的过程。在教学中鼓励学生观察、操作、推理,运用多种方式探索三角形有关性质。

2.注重创设具有现实性、趣味性和挑战性的情境,体现三角形的广泛应用。

初二数学上册教案 12

一、学生起点分析

《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。

二、教学任务分析

教学目标设计:

知识目标:

1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;

2、认识并能画出平面直角坐标系;

3、能在给定的直角坐标系中,由点的位置写出它的坐标。

能力目标:

1、通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;

2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。

情感目标:

由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

教学重点:

1、理解平面直角坐标系的有关知识;

2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标;

3、由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

教学难点:

1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究;

2、坐标轴上点的坐标有什么特点的总结。

三、教学过程设计

第一环节感受生活中的情境,导入新课

同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5— 6),回答以下问题:

(1)你是怎样确定各个景点位置的?

(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?

(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的�

学生自学课本,理解上述概念。

2、例题讲解

(出示投影)例1

例1写出图中的多边形ABCDEF各顶点的坐标。

3.2平面直角坐标系:课后练习

一、选择题(共9小题,每小题3分,满分27分)

1、若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()

A、第四象限B、第三象限C、第二象限D、第一象限

【考点】点的坐标。

【专题】计算题。

【分析】由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限。

【解答】解:∵点A(﹣2,n)在x轴上,

∴n=0,

∴点B的坐标为(﹣1,1)。

则点B(n﹣1,n+1)在第二象限。

故选C。

【点评】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负。

2、已知点M到x轴的距离为3,到y轴的距离为2,且在第三象限。则M点的坐标为()

A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)

【考点】点的坐标。

【分析】根据到坐标轴的距离判断出横坐标与纵坐标的长度,再根据第三象限的点的坐标特征解答。

【解答】解:∵点M到x轴的距离为3,

∴纵坐标的长度为3,

∵到y轴的距离为2,

∴横坐标的长度为2,

∵点M在第三象限,

∴点M的坐标为(﹣2,﹣3)。

故选D。

【点评】本题考查了点的坐标,难点在于到y轴的距离为横坐标的长度,到x轴的距离为纵坐标的长度,这是同学们容易混淆而导致出错的地方。

3.2平面直角坐标系同步测试题

1.点A(3,—1)其中横坐标为XX,纵坐标为XX。

2.过B点向x轴作垂线,垂足点坐标为—2,向y轴作垂线,垂足点坐标为5,则点B的坐标为。

3.点P(—3,5)到x轴距离为XX,到y轴距离为XX。

本文标题:《八年级上册数学教案优秀12篇》
本文地址:http://www.chongwum.com/jiaoyi/96956.html
《八年级上册数学教案优秀12篇》图文推荐
上一篇:《《祁黄羊》第二课时教学设计(优秀27篇)》 下一篇:返回列表
“《八年级上册数学教案优秀12篇》”相关阅读
  • 《八年级上册数学教案优秀12篇》
  • 《《祁黄羊》第二课时教学设计(优秀27篇)》
  • 《《小镇的早晨》第二课时教案【优秀20篇】》
  • 《二年级语文下册教案《恐龙的灭绝》【优秀22篇】》
  • 《32兰兰过桥教学设计(4篇)》
  • 《幼儿园大班角色游戏教案《烧烤食物》含反思(优秀30篇)》
  • 《大班食品安全教案(优秀11篇)》
  • 《大班主题我国的国宝——大熊猫教案优秀11篇》
  • 《幼儿园小班《蒲公英》教案(最新20篇)》
  • 《小班音乐优秀教案《蝴蝶飞飞》【优秀5篇】》
  • 《幼儿园小班美术教案《毛毛虫》【优秀13篇】》
  • 《小班晒太阳教案【优秀19篇】》
最新文章
  • 1《八年级上册数学教案优秀12篇》
  • 2《《祁黄羊》第二课时教学设计(优秀27篇)》
  • 3《《小镇的早晨》第二课时教案【优秀20篇】》
  • 4《二年级语文下册教案《恐龙的灭绝》【优秀22篇】》
  • 5《32兰兰过桥教学设计(4篇)》
  • 6《幼儿园大班角色游戏教案《烧烤食物》含反思(优秀30篇)》
  • 7《大班食品安全教案(优秀11篇)》
  • 8《大班主题我国的国宝——大熊猫教案优秀11篇》
  • 9《幼儿园小班《蒲公英》教案(最新20篇)》
  • 10《幼儿园小班美术教案《毛毛虫》【优秀13篇】》
  • 11《小班音乐优秀教案《蝴蝶飞飞》【优秀5篇】》
  • 12《小班晒太阳教案【优秀19篇】》
热门推荐
  • 1济南宠物市场在哪里?济南市天桥区凤凰山花鸟宠物市场
  • 2关于一个女孩去宠物市场买宠物的故事:猫和狗都喜欢
  • 3宠物店购买柴犬靠谱吗?
  • 4独居想养安静的宠物,有没有推荐的?
  • 5宠物用品入驻抖音需要什么资料?抖音宠物用品入驻需要哪些条件?
  • 6我是如何做到宠物用品库存尾货的天花板的
  • 7青岛即墨哪里有宠物市场?宠物交易市场大全地址
  • 8你会因为生活困难抛弃宠物吗?会不会把宠物送人或者卖掉
  • 9在宠物店买猫靠谱吗?需要注意什么一般多少钱
  • 10宠物狗的起源和历史发展进化是这样的
  • 11辽宁瀛沈律师事务所律师刘国照代理过多起和宠物粮安全有关的案件。在他看来,宠物粮市场乱象背后,主要是宠物粮领域法律依据不足、执法不严,宠物粮市场无序发展所致。
  • 12想养猫是在网上买还是去实体店宠物店买?
猜你喜欢
  • 1《一年级语文《语文园地一》教学反思(优秀18篇)》
  • 2《语文《中彩那天》教学反思【优秀17篇】》
  • 3努力付出的名言
  • 4曾国藩警句
  • 5小学毕业感言优秀
  • 6《高中期末操行评语(汇编六篇)》
  • 7《六年级上册数学教案优秀13篇》
  • 8《2025八年级下学期班主任评语(合集30篇)》
  • 9《《100以内的加减法》教学反思优秀19篇》
  • 10一年级好学生评语
  • 11《小学二年级语文《画家和牧童》原文、教案及教学反思(最新19篇)》
  • 12《一年级下册数学《数的顺序、比较大小》教案(优秀14篇)》

Copyright©2023宠物网www.chongwum.com/版权所有 备案号:鲁ICP备20000893-7 网站地图

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系QQ;153586623