作为一位杰出的教职工,时常需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那么你有了解过教案吗?
角形教案 1
一、教学目的
(一)知识与技能
1、掌握用两边及夹角正弦表示的三角形面积公式;
2、理解正弦定理、余弦定理及其推导过程。
(二)过程与方法
1、从直角三角形迁移到斜三角形,运用从特殊到一般的数学方法猜想、论证正弦定理和余弦定理;
2、培养学生从旧知识中感悟、思考出新知识的能力,学会温故知新。
(三)情感、态度与价值观
通过大胆猜想,激发学生的创新意识和探索;通过温故知新的教学方式,教学生事事学会反思;通过相互讨论,养成团结互助的良好品质。
二、教学重点和难点
(一)教学重点
正弦定理、余弦定理的推导和应用。
(二)教学难点
1、余弦定理及其变形式的推导过程;
2、解斜三角形时何时选取正弦定理,何时选取余弦定理。
三、教学设计说明
初中时,学生们学习了解直角三角形的相关知识。解斜三角形的思路与之类似,通过旧知识引入新课是很自然的一种思路。又由于本节的主要内容是要去解三角形,所以新课讲授时,以如何“知三求三,解三角形”展开,紧扣基本主题。鉴于复旦附中学生基础较好,课堂内容的深度和容量要符合学生特点,在夯实基础的前提下做了比较系统化的,让学生能够宏观地、整体地去把握这节课内容。在例题的选择方面,坚持覆盖全面,难度适宜的原则。在行课过程中,还设计了对个别学生的提问和与整个班级的问答环节,以调动学生的积极性,增加参与度。
四、教学过程
(一)复习引入
*解直角三角形
六个元素: “知三求三” (知的不能是三个角)
三个角∠A∠B∠C
3条边a b c
(1)已知a b∠C(直角)
(2)已知a∠A∠C(直角)
(3)求面积
(二)归纳猜想
在给定的三角形是直角三角形的时候,我们可以完成“知三求三”。那么如果是斜三角形呢?还能不能“知三求三”呢?如果可以的话,式子的形式和直角时有什么关系呢?
说明与同学们互动,群策群力,想出解斜三角形的思路!
(3)论证探究
*解斜三角形
“ 知三求三”(知的不能是三个角)
(1)问:已知a b∠C
思考没有直角,那我们把要求的边放到直角三角形的里面
过B作为AC边的垂线,垂足为D( 钝角、锐角考虑周全)
得到两个直角三角形,三角形BCD和三角BAD
=
=
=
=
所以,C得以求出
余弦定理:三角形的一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦值的乘积的两倍。
提问这个式子和勾股定理有什么关系?
勾股定理是∠C=90°时余弦定理的特殊情况。
思考这里,我们给了两边和它们的夹角,可以求第三边的长,那么,如果给的是三边的长,可不可以求角呢?
(2)问:已知a b c
说明把上面(1)中的式子变形,就得到了角的求法。
(3)求面积
(4) 上面的面积公式每个表达式都含3个角或边,考虑同除,进行简化
分子分母倒过来写(为什么到过来写,下节课介绍)
==。
三角形中,各边与它所对角的正弦值的比相等,这就是正弦定理。
运用它可以解已知所有“两角一边”的及部分“两边一角”的三角形。
(4)举例应用
例1(1)已知的三边之比为,求最大的内角。
解设的三边长为a,b,c且a:b:c=
由三角形中大边对大角可知:∠A为最大的角.由余弦定理
所以∠A=120°.
(2)中,AB=2,AC=3,∠A=,求BC和三角形面积。
解由余弦定理可知
BC2=AB2+AC2-2AB×AC·cosA
所以BC=7.
由面积公式有
S==
选题目的
1、介绍完公式,选择简单的题目,作为公式的简单应用。
2、(1)(2)两个小题分别涉及余弦定理和它的变形式,涵盖了运用余弦定理的两个方面。
3、在实例中引导学生发现,“已知三边”,“已知两边夹角”的情况下,应选用余弦定理解三角形。
例2: 在中,已知,解三角形。
解:。
因为=,
所以
又因为=,所以
选题目的
1、选择正弦定理相关题目,和上面例1配合,涵盖本节课主要知识点。
2、引导学生在实例中发现,“已知两角和一边”的解三角形问题,可以利用正弦定理来解决。
例3某林场为及时发现火情,在林场中设立了两个观察点A和B,某日两个观察点的林场人员分别观测到C处出现火情。在A处观测到火情发生在北偏西40°方向,而在B处观测到火情在北偏西60°,已知B在A的正东方向10千米处。现在要确定火场C距A,B多远?()
解:在三角形中,∠C=180°-∠A -∠B=20°
有正弦定理知:
b=
选题目的
1、 通过应用问题,培养学生从实际问题中抽象出数学模型的能力。
2、 让学生意识到,在生活中处处存在数学问题,培养学生经常用数学去观察思考生活中的各种问题。
(五)
1、新内容:正弦定理、余弦定理、面积公式
2、典型题目:解斜三角形,包括以下几类:
已知三边的,用余弦定理;
已知两边夹角,用余弦定理;
已知两边一角(非夹角),用正弦定理,注意多解;
已知两角(也就是三角)一边,用正弦定理。
(六)作业
练习5.6(1)1.2.3练习5.6(2)1.2.3.4.5
说明作业中包括用正弦定理、余弦定理求解三角形和面积公式的应用。
五、教学反思
1、板书的整体把握有所提高,对黑板的实际“容量”有了清楚认识。
2、互动不少,学生的积极性得以调动,但对生成问题的处理还有欠经验。
3、整堂课还是比较丰富、流畅的,但在部分内容的表达上,还不够清晰准确。
4、第一次上新课,准备过程及实践上课都使人受益匪浅。
认识三角形 认识三角形教案 2
在《相似三角形》的复习课中,我安排了两节复习课。第一节着重复习比例线段的基本知识及基本技能;第二节则采取“探究式教学”来复习相似三角形的性质与判定,培养学生的实践及探索能力。
比例线段在平面几何计算和证明中,应用十分广泛,相对已学的两条线段相等关系而言,四条线段成比例关系对学生分析问题及综合解题的能力要求更高。第一节课的复习中,着重复习了比例线段的意义及性质,同时通过例题进行巩固,学生掌握的效果不错。
在第二节课中,主要通过以下三个方面展示出学生的探究性学习:
本节课以学生的自主探索为主线,课前布置学生自己对比例线段的运用进行整理,这样不仅复习了所学知识,而且可以使学生亲身体验“实验操作-探索发现-科学论证”获得知识的过程,体验科学发现的一般规律;解决问题时,让学生自己提出探索方案,使学生的主体地位得到尊重;课后让学有余力的学生继续挖掘题目资源,用发展的眼光看问题,从而提高学习效率,培养学生的思维能力。
在教学中,教师是学生学习的组织者、引导者、合作者及共同研究者,要鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新。在课堂中,我着重引导学生自己小结相似三角形的性质及判定方法,同时给予肯定。在后续的例题分析中,也是通过一步步的引导,让学生自己思考、分析并得出整个解题的过程及步骤。关键时点拔,不足时补充。
学生体验了学习过程后,从单纯的重视知识点的记忆,复习变为有意识关注学习方法的掌握,数学思想的领悟,同时让学生关注课堂小结,进行自我体会,自我反思,在反思中成长、进步。
在《相似三角形》这一复习课中,通过学生自主探索,让学生主动学习,培养了学生积极主动的探索创新精神,学生也能掌握到了相关的知识。但是,仍有不足之处。问题的应用中,即利用相似三角形的性质或判定证明的过程中,思路仍是不够清晰,书写的过程仍是不够完整。也就是说,缺少了教师的引导分析,则学生不知向何处思考。这是大部分学生具有的情况。
《三角形》教案 3
一、教材内容分析
本课是在学生已经明确三角形的特征,学习了三角形三边的关系,掌握了角的概念和角的分类的基础上进行教学的。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内� 根据三角形由三边围成的图形的独有的特征,以及角的分类:锐角、钝角、直角等这些推理,对学生来说,利用已有的知识经验,总结和归纳“三角形分类”的标准并不难。
教材分为两个层次:一是三角形按角分为锐角三角形、钝角三角形和直角三角形,并通过集合图形象地揭示三角形按角分的三种三角形之间的关系,体现分类的不重复和不遗漏原则;二是三角形按边分为等腰三角形、等边三角形和一般三角形,按边分类较难一些,教材不强调分成几类,着重引导学生认识等腰三角形、等边三角形边和角的特征。
二、教学目标
1、通过对一些三角形的每个内角大小的测量、比较、分类,使学生认识三角形可分为直角三角形、锐角三角形和钝角三角形。
2、通过动手测量操作,会按边的特征给三角形进行分类,使学生认识等腰三角形、等边三角形及它们的特征。
3、使学生联系实际感受三角形在日常生活中的应用,能积极参与操作、实验等学习活动,能主动与他人合作交流并获得积极的情感体验。
三、教学重点和难点
教学重点:会按角的特征及边的特征给三角形进行分类。
教学难点:区别掌握各种三角形的特征。
四、教学准备:
多媒体课件、量角器、三角板、直尺、随堂小卷(包含有供给学生探索的各类三角形图形)。
五、设计理念
“自主学习的过程实际就是教学活动的过程”。以活动促学习是本节的教学定位。通过情景创设,学生经历探索发现、讨论交流、独立思考等活动,逐步建立对三角形角与边特征的认识。通过看一看、想一想、量一量、分一分、连一连、猜一猜等多种形式的学
六、学情分析
“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的铺垫。
四年级的学生通过一、二年级的学习,对三角形都有一定的认识,而且也学习了角的分类和线线之间的。关系,因此在教学中,引导学生通过量一量、比一比、分一分、议一议等方式来解决问题。在交流各自的方法的过程中进一步解决问题。
七、教法与学法
教法:创设情景——为自主探究搭建平台;积极引导——为有效学习指明方向;主动参与——为合作交流营造氛围;激励评价——为主动学习鼓励加油。
学法:观察分析——在情景中提出问题;探索思考——在操作中解决问题;分组交流——在探索中理解问题;独立反思——在总结中内化问题。
【教学过程】
一、复习引新
师:下面的角各是什么角?(出示课件)
怎样判断一个角是锐角、直角或钝角?
师:那么我们能不能根据角的分类对三角形进行分类呢?今天我们就来研究三角形的分类。揭示课题并板书:三角形的分类
(设计意图:引导学生复习与新知识有密切联系的旧知识,是为学习新知识做好迁移铺垫,为突破难点打好基础。)
二、新课:
1、动手活动:
(1)出示小卷子,观察每个三角形。可以动手量一量,并填写好表格。根据你发现的特点将三角形分一分类。
2、按角分的情况
引导学生明确:相同点是每个三角形都有两个锐角;不同点是还有一个角分别是锐角、直角和钝角。
师:我们可以根据它们的不同进行分类
(1)分类。
根据三角形三个角的特点的分析,可以把三角形分成三类。
图①和图⑥,三个角都是锐角,它就叫锐角三角形。(板书)
图②和图④还有一个角是直角,它就叫直角三角形。(板书)
图③和图⑤还有一个钝角,它就叫钝角三角形。(板书)
师引导学生归纳出:
三个角都是锐角的三角形叫做锐角三角形;
有一个角是直角的三角形叫做直角三角形;
有一个角是钝角的三角形叫做钝角三角形。
(2)三角形的关系。
我们可以用集合图表示三角形之间的关系。把所有三角形看作一个整体,用一个圆圈表示。(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭。(边说边把集合图补充完整。)
(3)因为三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角……
问:还有没有其他的分法?
3、按边分的情况:
让学生动手操作,量出下面各三角形边的长度,找一找发现了什么?
(1)生:我发现有两条边相等的三角形,还有三条边都相等的。
(2)师:我们把两条边相等的三角形叫做等腰三角形,相等的两条边叫腰,另外一条边叫底。(边说边板书)
(3)师:把三条边都相等的三角形叫等边三角形。(边说边板书)
(4)师:同学们请你们分别量一量课本84页的等腰三角形和等边三角形的各个内角,你有什么发现?
(5)从红领巾、三角板、慢行标志中找一找哪里有这两种特殊的三角形?
(设计意图:通过具体的操作,可以引导学生获得丰富的感性知识,也可以为学生创设一个探索思考的环境,使得他们主动参与知识的形成过程。同时注重在教学过程中,围绕某一知识引导学生进行广泛的讨论和交流,使学生在“互助”中积极去探索,去发现,去发现知识,解决问题。充分发表自己的见解,促使学生在探究分类中学会参与,学会合作,学会创新。)
三、巩固练习:
1、判断题。
(1)锐角三角形中最大的角一定小于90°。( )
(2)所有的等边三角形都是等腰三角形。 ( )
(3)等腰三角形都是等边三角形。( )
(4)三角形中可以有两个直角。( )
(设计意图:设计这一组练习题的目的在于巩固新知,形成技能,发展学生的灵活思维。)
2、猜一猜的游戏。(课本练习十四第7题)
师:如果是(1)露出一个直角(2)露出一个钝角(3)露出一个锐角,你能判断出他们各是什么三角形吗?为什么?
(设计意图:通过基础题的训练,引导学生对所学知识有所掌握,在选思维题的思考过程中,又一次对三角形分类知识进行提升,进一步培养学生的思维能力。)
3、对三角形进行分类。
4、和三角形告别。
(设计意图:这两题的目的在于巩固新知识,体会三角形按特征可以分为那些三角形,明确各类三角形之间的联系。)
四、课堂小结:
以谈收获和实际应用的方式做小结。
(设计意图:让学生谈谈经过自己动手操作、观察比较、自主探索发现的三角形分类方法及各种三角形特征,不仅及时有效地巩固所学知识,训练学生的语言表达能力,而且可以使学生从中感受、体验到一个探索者的成功乐趣,从而增强了学习的动力与信心。)
板书设计:
三角形的分类
按角分类: 按边分类:
锐角三角形 等腰三角形:两边相等,两底相等。
直角三角形 等边三角形:三边相等,三角相等。
钝角三角形 一般三角形
认识三角形教案及教学反思 4
活动目标:
1、感受几何图形拼搭组合的变化,发展空间方位知觉能力。
2、尝试将三角形装入盒子,在移动、翻转、拼接几何图形的过程中,体验几何图形变化的乐趣。
3、积极的参与活动,大胆的说出自己的想法。
4、培养幼儿乐观开朗的性格。
活动准备:
ppt课件,小三角形人手12个,三角形底座、正方形底座、长方形底座各六个。
活动过程:
一、播放课件:指认几何图形出示三角形"我是快乐的三角形,我最喜欢和我的朋友一起玩游戏了。看看我的哪些图形朋友来了。"指认几何图形,并说出它们的名称。请幼儿指认旋转后的几何图形。
二、拼搭几何图形,感受三角形拼搭组合的变化。
1、玩游戏:三角形碰碰乐。
播放三角形声音,请问你们听到了什么?
2、怎样才算2个三角形碰在一起了?(幼儿回答老师在电子白板上演示,然后播放操作视频)
3、归纳小结。一个三角形的一条边和另一个三角形的一条边要完全重合在一起,两个三角形才快乐。
三、引导幼儿进行拼搭活动。
1、介绍操作规则。
第一,听清楚是"几个三角形碰碰乐"。第二,一个三角形的一条边和另一条边要全部"碰"在一起。
2、教师播放课件录音"碰碰乐、碰碰乐,2个三角形碰碰乐。你碰我,我碰你,碰在一起真快乐。"观察幼儿拼搭情况。
3、提问:2个三角形"碰出"了什么图形呢?
4、归纳小结。
5、教师再次播放课件录音"碰碰乐、碰碰乐,4个三角形碰碰乐。你碰我,我碰你,碰在一起真快乐。"请用4个三角形拼出一个大的长方形。
6、4个三角形"碰出"了一个长方形,现在请你任意移动一个三角形,把它变成另一个图形。看看你能变出几个图形呢?
四、送三角形回家。
1、出示几何图形底座:三角形、正方形、长方形。
"你的12个三角形要回家了,这里只有一个底座才是这12个三角形的家,要把12个三角形不多不少、正正好好送回去,拿一个底座是它们的家?
2、提问:你觉得12个三角形的家是哪一个底座?见你的名字贴贴到相应的图形中。然后请你来说说你的理由。
3、请幼儿选择自己认为的。底座去操作。
4、提问:你们刚才送了之后,哪个底座才是正正好好12个三角形的家呢?请你说说理由。
5、归纳小结:三角形底座太小,有几个没有放进去,正方形底座又太大,要再多几个小三角形才行;长方形底座不大不小刚刚好。
6、刚才选择三角形和正方形底座的幼儿重新找一个长方形底座再次将12个三角形都送回家。
活动反思:
大班幼儿对生活中的几何图形充满了兴趣和好奇,并且对它们有了一个认知的印象。但是几何图形对幼儿来说又是一个较为抽象、枯燥的内容,于是,我选择了此教案《三角形碰碰乐》,在活动中我让幼儿自我操作发现了各种图形相互之间的联系,把抽象的数学概念与实物形象联系起来,让幼儿在操作中进行想象、创造,既可以巩固对图形的认识,增加对数学活动的兴趣,又能激发想象力、创造力,锻炼思维的灵活性、变通性,培养操作能力。
在活动中孩子们都能在我的引导下探索各种形状的组合。活动第一环节主要是巩固幼儿对几何图形的认识,丰富幼儿对平行四边形的认识。同时,通过“转动”几何图形、改变几何图形的方向,加深幼儿对几何图形主要特征的认识,并为后续的“图形拼搭”活动作铺垫。
在第二环节中我用第一、第二……的方式宣布游戏规则,为的是帮助幼儿有意识、有条理地记忆。宣布游戏规则后我进行了及时得追问,加深幼儿对游戏规则的理解。活动中第一次操作是用2个三角形拼搭,第二次操作是用4个三角形拼搭,第三次是小组合作用16个三角形拼搭,拼搭的难度是越来越大,有效地挑战了幼儿的观察、比较、分析、概括,以及动手解决问题等能力。
本次活动我以数学教育生活化为主导思想,以来自现实生活中的图形作为操作材料,让幼儿充分体验到活动的乐趣,真正做到“玩中学”、“学中玩”。
角形教学设计教案 5
学习目标:
1.能用不同的方法探索并了解三角形3个内角之间的关系;
2.会利用三角形的内角和定理解决问题;
3.知道直角三角形的两个锐角互余的关系;
4.通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力。
学习重点:
三角形的内角和定理
学习难点:
三角形内角和定理推理和应用
教学过程:
一、情境创设,感悟新知
1、三角形蓝和三角形红见面了,蓝炫耀的说:“我的面积比你大,所以我的内角和也比你大!”
红不服气的说:“那可不好说噢,你自己量量看!”
蓝用量角器量了量自己和红,就不再说话了!
同学们,你们知道其中的道理吗?
三角形三个内角的和等于180°
2、你有什么方法可以验证呢?
方法一:度量法。
方法二:剪拼法。
3、你还有其他说明方法吗?
二、探索规律,揭示新知
1、议一议:如,3根木条相交得∠1、∠2.若a∥b,则∠1+∠2=.
理由:.
2、操作:把木条a绕点A转动,使它与木条b相交于点C.根据形,你能说明“三角形3个内角的和等于1800”的理由吗?
3、说理:
(补充说明:也可以转化为平角进行说明。)
4、方法小结:在这里,为了说明的需要,在原来的形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。
5、你还有其他方法说明“三角形3个内角的和等于1800”吗?
(1)
(2)
6、思路总结:为了说明三个角的和为1800,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用思想方法。
三、尝试反馈,领悟新知
例1:如,AC、BD相交于点O,∠A与∠B的和等于∠C与∠D的和吗?为什么?
例2.如右,在△ABC中,∠A=3∠C,∠B=2∠C求三个内角的度数。
若将条件改为∠A:∠B:∠C=2:3:4,又如何解呢?
四、拓展延伸,运用新知
1、随堂练习
2.结论:直角三角形的两个锐角互余。
3、巩固练习:
①、△ABC中,若∠A+∠B=∠C,则△ABC是()
A、锐角三角形B、直角三角形
C、钝角三角形D、等腰三角形
②、在一个三角形的3个内角中,最多能有几个直角?最多能有几个钝角呢?为什么?
③、如△ABC中,CD平分∠ACB,∠A=70度,∠B=50度,求∠BDC的度数。
五、课堂小结,内化新知
1本节课你有哪些收获?
2你还有什么疑问?
六、布置作业,巩固新知
1、必做题:
习题7.5第1、2、3、4题。
2、选做题。
如右:试求出中∠1+∠2+∠3的度数
七、教学寄语,拓宽课堂
老师寄语:
如果你想学会游泳,你必须下水;
如果�
《三角形》教案 6
设计意图:
中班的幼儿喜爱摆弄各种各样的图形,喜欢涂画。我们可以让孩子在摆弄涂画中,认识各种不同的颜色,大小的图形,使幼儿产生兴趣,并让幼儿通过摆弄,粘贴各种图形再进行添画,进一步激发幼儿对美术活动的兴趣。培养想象力,观察能力和创造美的`能力及对拼贴画的兴趣。
活动目标:
1.能将三角形组合拼贴成各种图形,并添画成各种物体。
2.发展幼儿的想象力,创造力,观察能力和操作能力。
3.巩固复习三角形的特征。和使用浆糊的方法。
4.让幼儿体验自主、独立、创造的能力。
5.鼓励幼儿乐于参与绘画活动,体验绘画活动的乐趣。
活动准备:
各种大小,形状,颜色不同的三角形每组若干;浆糊每组一盘;棉签每组若干支;水彩笔,图画纸人手一份。教师作品若干。
活动过程:
1.出示一个拟人大三角形,引导幼儿想象三角型的特点,像什么。幼儿边说,教师边用三角形在黑板上演示出来。并进行添画。让幼儿感受图形的变化。引起幼儿对拼贴画的兴趣。
2.欣赏教师用三角形拼贴的作品。说一说发现了什么。有什么感受。引导幼儿发现可以使用不同大小,不同颜色。多片三角形进行拼贴。并通过添画是画面更生动。
3.介绍材料。重点在三角形的颜色大小。
4.请小朋友们进行活动,重点讲解示范抹奖糊,贴三角形的方法(让幼儿先想一想要拼贴什么。再进行操作。)
5.教师巡回指导,重点指导幼儿可将两个以上的三角形进行组合添画。
6.展示幼儿作品。可请个别幼儿上来介绍自己的作品。教师适当的提出建议。
认识三角形教案 7
教学目标
1、知道三角形高、中线、角平分线的定义
2、会做任意三角形高、中线、角平分线
重点
会做任意三角形高、中线、角平分线
难点
会做任意三角形高、中线、角平分线
教学方法
讲练结合、探索交流课型新授课教具投影仪
一、三角形的高
1、复习:过点A做BC的垂线,垂足为D
2、在黑板上做△ABC,过点A做对边BC
的垂线,垂足为D,我们
就将线段AD称为△ABC的高
3高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂
足之间的线段称为三角形的高
例如在上图中,我们从△ABC的一个顶点出发,向它对边BC所在
的直线作垂线,垂足为D,线段AD就是三角形的高
注:
1)三角形的高必为线段
2)三角形的高必过顶点垂直于对边
3)三角形有三条高
为了将这三条高加以区别,我们把AD称为BC边上的高
例:做出下列三角形的三条高
1锐角三角形:
可由教师先做示范,然后再让学生自行画出
其余两个
2直角三角形
由于∠C等于900,说明AC⊥BC,那么BC
边上的高即为AC,AC边上的高即为BC,
3钝角三角形
二,三角形的角平分线
1引入:一知△ABC,做∠A的平分线AD交BC与点E,线段AE就称为△ABC的角平分线
2定义:在三角形中,一个内角的平分线与它的对边相交,,这个角的顶点与交点间的线段称为三角形的角平分线
3注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线
2)三角形的角平分线必过顶点平分三角形的一内角如上所示,△ABC的角平分线AE平分∠A,即∠BAE=∠CAE=∠BAC
3)三角形有三条角平分线
为了将这三条角平分线加以区别,我们把AE称为∠BACD的角平分线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形
钝角三角形
三,中线
1引入:如右所示,取BC的中点F,连结AF,那么线段AF就称为△ABC的中线
2定义:在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线
如上所示,线段AF就是△ABC的中线
31)三角形的中线必为线段
2)三角形的中线必平分对边如上所示,线段AF是△ABC的中线
必有:BF=CF=BC
3)三角形有三条中线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形:
钝角三角形
素材A:
1在△ABC中,AD是角平分线,
BE是中线,∠BAD=400,则
∠CAD=,
若AC=6cm,则AE=
素材B:
2下列说法正确的是()
A三角形的角平分线、中线、高都在三角形的内部
B直角三角形只有一条高
C三角形的三条至少有一条在三角形内
D钝角三角形的三条高均在三角形外
答案:1400、6㎝2C
角形数学教案 8
活动目标:
1、正确区分圆形、三角形、正方形。
2、初步尝试进行分类游戏。
活动准备:
红、蓝、绿色三色图形(圆形、三角形、正方形)项链、红色、绿色和蓝色呼啦圈。
活动重点:
正确区分圆形、三角形、正方形。
活动难点:
初步尝试进行分类游戏。
活动过程:
1、送礼物:
——“这里有许多漂亮的项链,快选一根戴起来!”
幼儿选择,佩戴。
2、找家:
按颜色分类
——“我们戴着漂亮的项链,回家去吧,猜猜你住在哪间房间里?”
(出示红、绿、蓝呼啦圈)引导幼儿发现项链的颜色与呼啦圈颜色比较的关系。
按图形分类(用粉笔在地上画出三种图形)
——“现在回到你和项链形状一样的家里吧!”
角形数学教案 9
一、说教材
认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。根据本班幼儿的年龄特点,我制定了以下目标一、
二、说目标:
1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。
2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。
3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。
围绕教学目标根据小班幼儿的认知特�
三、说活动准备。
经验准备:3以内的点数
材料准备:1、圆形、三角形娃娃各一个。2、图形拼图、3、彩笔(长的)
四、说教学方法。
为了让幼儿更好的掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探究法,体现教师为主导,幼儿为主体的师生双边活动。
五、说教学方法
为了学习过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:
1、复习3的数数
设计这一环节的的是为了在下步学习三角形特征时幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。
2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。
⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的图形都是三角形。
3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。
⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。
⑵看图拼图找三角形:
图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:
这些拼图像什么?哪些部分是用三角形拼成的?用了几个三角形?
⑶请小朋友想一想,在哪里还见过三角形呢?
六、说活动延伸:
小朋友都有自己的彩笔,请小朋友回到家跟爸爸妈妈拼个三角形吧!告诉他们三角形有几条边,几个角。
角形数学教案 10
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养同学的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发同学热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养同学勇于创新,多方位审视问题的创造技巧。
教学重点:
全等三角形的性质。
教学难点:
找全等三角形的对应边、对应角
教学用具:
直尺、微机
教学方法:
自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般同学都能发现这两个三角形是完全重合的。
(2)同学自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让同学用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由同学观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用
(1)投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是全等三角形的对应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求同学独立思考后回答,其它同学补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强同学的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让同学自由表述,其它同学补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业P55#2、3、4
b.上交作业(中考题)
数学三角形教学教案 11
【活动目标】
1、认识三角形的特征,知道三角形由3条边,三个角。
2、能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。
【活动准备】
1、PPT一份,大三角板一个,长短不同的小棒,雪糕棒等
【活动过程】
一、导入:
手指游戏:快乐的小鱼
二、学习三角形特征
1、认识三角形
(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。
(PPT出现一根红色的魔法线)提问:它是什么颜色的?
(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线,
(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)
(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。
(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。
2、巩固三角形特征
(1)、引导幼儿观察图形,发现三角形的特征。
前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)
A钟表店
B食品店
C帽子店
(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)
(3)引导幼儿在活动室里找一找三角形的物品3、。老师小结三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。
三、复习三角形的特征提供冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。
【活动反思】
小班幼儿的思维是具体形象思维,用变魔术的形式引出开头吸引孩的。注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的小结使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。
《三角形》教案 12
一、学情分析
学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。
二、教学任务分析
本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:
1.知识目标:
①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 ②利用“HL’’定理解决实际问题
2.能力目标:
①进一步掌握推理证明的方法,发展演绎推理能力
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。
1:复习提问
1.判断两个三角形全等的方法有哪几种?
2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。
3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通
1 / 5
过作等腰三角形底边的高来证明“等边对等角”。
要求学生完成,一位学生的过程如下:
已知:在△ABC中, AB=AC.
求证:∠B=∠C.
证明:过A作AD⊥BC,垂足为C,
∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,
∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的对应角相等)
在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”。而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的。可以画图说明。(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .
也有学生认同上述的证明。
教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等。”,从而引入新课。
2:引入新课
(1).“HL”定理。由师生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB一BC(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股
定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教师用多媒体演示:
定理 斜边和一条直角边对应相等的两个直角三角形全等。
这一定理可以简单地用“斜边、直角边”或“HL”表示。
2 / 5
22A'B'
从而肯定了第一位同学通过作底边的高证明两个三角形
全等,从而得到“等边对等角”的证法是正确的。
练习:判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等。 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题
(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明。
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D' (如图).
求证:Rt△ABC≌Rt△A'B'C'.
证明:在Rt△BDC和Rt△B'D'C'中,
∵BD=B'D',BC=B'C',
∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,
∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',
∴Rt△ABC≌CORt△A'B'C(SAS).
通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。
3:做一做
问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法。
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)
4:议一议
3 / 5
BEADCDA'D'BB'
认识三角形教案 13
活动目标:
1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征,认识三角形的多样性;
2、能不受其他图形干扰找出三角形;
3、培养幼儿的动手操作能力,发展思维的灵活性。
活动准备:
教具:
1、各种不同的三角形;数字卡;
2、星星、正方形、菱形各1。
学具:
1、3条长度不同的纸条(幼儿每人一套);
2、各种图形:圆形、正方形、长方形、三角形若干;
3、图形拼图;
4、胶垫人手一块
活动过程:
一、探索操作:
1、请幼儿拿3条不同长度的纸条拼摆图形。幼儿探索活动,教师指导。
2、幼儿展示自己的图形,教师集体说说,摆了什么样的图形,用了几条纸条,有几个角。
二、认识三角形的特征
1、"小朋友真棒!现在我们请出今天的图形客人。"出示三角形引导幼儿数数三角形的角与边各有多少?(教师根据幼儿数出的角、边,在三角形上标上数字)
2、出示星星、正方形、菱形、让幼儿分辨它们是否三角形?
3、出示各种图形,让幼儿把三角形归类放到一边。(二次操作,巩固对三角形特征的认识)
4、操作:幼儿人手一图形拼画,请幼儿找出画中的三角形,涂色。
5、向爸爸妈妈展示自己的画。
三、活动结束。
教学反思
我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了:
1、三角形有三个角、三条边;
2、三角形的三条边可以不一样长,三个角可以不一样大。
认识三角形教案 14
教学目标
(一)使学生理解三角形的意义,掌握三角形的特征,学会按角的特征给三角形分类.
(二)培养学生观察能力、识图能力和归纳概括能力.
教学重点和难点
使学生理解三角形的意义和特征,会按角的特征给三角形进行分类,既是教学的重点,也是学习的难点.
教学过程设计
(一)复习准备
1.指出下面各是什么图形?(投影)
说出长方形、正方形的边是直线、射线还是线段?
2.指出下面各是什么角?
说出什么叫直角、锐角、钝角?
组成角的两条边是什么线?
3.请大家在本子上画出直角(用三角板)、锐角、钝角各一个.
小结:我们已经学习了线段和角,如果把角的两条� )
教学要求:
1.使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。
2。通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。
3。引导学生运用转化的方法探索规律。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学过程:
一、激发
1.出示平行四边形
1。5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积我们学过哪些方法?(板书:平行四边形面积=底高)
(2)底是2厘米,高是1。5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)
二、尝试
1.用数方格的方法求三角形的面积。
(1)指名读P。69页第一段。
(2)订正数的结果。
(3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
(4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。
2.用直角三角形推导。
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。
(2)拼成的这些图形中,哪几个图形的面积我们不会计算?
(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?
引导学生得出:每个直角三角形的面积等于拼成的。平行四边形面积的的一半。
面积=面积的一半
3.用锐角三角形推导。
(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。
提问:你发现了什么?
引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。
(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述边提问)
①把两个锐角三角形重叠放置。
提问:怎样操作才能拼成一个平行四边形?直接把一个三角形向左或向右平移,能拼成一个平行四边形吗?
②怎样才能使上面的三角形倒过来,使它原来的底在上面,底所对的顶点在下面?我们用旋转的方法,按住三角形右边的顶点不动,使三角形向逆时针方向转动180度,(也可以左边顶点不动,顺时针转动180度)直到两个三角形的底成一条直线为止。
③再把右边的三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止。
(3)教师带着学生规范地操作。
重点指导:哪点不动?哪点动?旋转多少度?怎样平移?转化的过程中旋转和平移有什么不同?(平移时各个点沿着直线移动,旋转时一个点不动,其它点都绕着不动点转动。)
(4)对照拼成的图形,你发现了什么?
引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。
板书:
面积=面积的一半
(5)练习十八第1题。
①两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。
②通过刚才的操作,你又发现了什么?
引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半。
面积=面积的一半
4.归纳、总结公式。
(1)通过以上三个实验,同学们互相讨论一下,你发现了什么规律?
(2)汇报结果。
引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。
(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)
板书:三角形面积=底高2
(4)完成书空。
5.教学字母公式。
(1)学生看书71页上面3行。
(2)提问:通过看书,你知道了什么?
引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:
S=ah2。(板书)
三、应用
1。教学例题:一种零件有一面是三角形,三角形的底是5。6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
①读题。理解题意。
②学生试做。指名板演。
③订正。提问:计算三角形面积为什么要除以2?
2。做一做。
订正时提问:计算时应注意哪些问题?
3.填空。
两个完全一样的三角形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(
)。因为每个三角形的面积等于拼成的平行四边形的面积的(),所以()。
4.练习十七第2、3题。
5.利用公式求P。75页方格上的三角形的面积。
四、体验
今天有何收获?怎样求三角形的面积?三角形面积的计算公式是怎样推导的?
五、作业
练习十七4题。
第二课时
教学内容:
三角形面积计算的练习(练习十七5~10题)
教学要求:
1。是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2。能运用公式解答有关的实际问题。
3。养成良好的审题、检验的习惯,提供正确率。
教学重点:
运用所学知识,正确解答有关三角形面积的应用题。
教具准备:
投影
教学过程:
一、基本练习
1。填空。
⑴三角形的面积=,用字母表示是。
为什么公式中有一个2?
⑵一个三角形与一个平行四边形等底等高,平行四边形的底是2。8米,高是1。5米。三角形的面积是()平方米,平行四边形的面积是(
)平方米。
二、指导练习
1。练习十七第7题:下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪个三角形的面积与涂了色的三角形面积相等?为什么?
⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来
2。练习十七第11※题:一张边长4厘米的正方形纸,从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少?
分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是222=2平方厘米。
3。练习十七第12※题:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少平方米,大约是多少公顷。
分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400602=12000(平方米)=1。2公顷。
三、课堂练习
练习十七第6、8题。(分组完成)
四、作业
练习十七第9、10题。